A quick guide to using LLArSoft

Karl Warburton with help from Tingjun Yang

02/02/2016

Guide to this guide

= A lot of the information shown here is taken from;
% The dunetpc cheat sheet, which is here.
+ The LArSoft guide, which is here.
+ The 35 ton getting start guide, which is here.

+ The LArSoft concepts webpage, which is here.
% An art/LArSoft course in June ‘15, which is here.

+ Very in-depth talks, I'm skimming over some stuff
which they cover really well here.

% LArSoft relies on the art framework which was developed
by the Fermilab scientific computing division for intensity
frontier experiments.

+ A useful (though HUGE) handbook to help use art can
be found here.

Structure of LLArSolft

2+ “The LArSoft software (the body of
code) is designed to work for alf/
planned and running liquid argon
experiments at Fermilab”

+ Experiment specific code is held
in experiment repositories, such
as specific geometry files and
intricate analysis code.

+ The code for the general
reconstruction, analysis, data
type declarations, generators and
event displays are held in
‘common’ repositories.

+ The ‘common * repostries
collectively are called the LArSoft
suite.

Experiment Experiment
A Z

Core LArSoft algorithms
tools, utilities

LArSoft / art Interfaces to
interface externals
art External
framework products

The LLArSoft suite

arcore Low level utilities and functions e.g. Geometry services
ardata Data products and other common data structures

arevt Low level algorithm code that use data products

arsim Simulation code

arreco Primary reconstruction

arana Secondary reconstruction/analysis e.g. PID
areventdisplay LArSoft based event display

arpandora LArSoft interface to the pandora reconstruction package
arexamples Placeholder for examples

+ All packages can checked out individually or as a whole —
more on this in a moment...

+ All code within a repository is within a subdirectory of the
same name eg larcore/larcore.

What is in a given respository?

+ For examples sake we will take larreco — the repo with
the reconstruction in it.

A file used by the build system to A directory for configuration files,
execute certain steps. dependency lists, etc

[phpl3tkw@dunegpvm@8 larreco\ 1% pwd
/dune/apg/users/phpl3tkw/LarDevelgp/srcs/larreco
[phpl3tkiv@dunegpvm@8 larreco\ 1% /ls
CMakelLists.txt ,larreco test ups

/ -

Source code directories under a
single directory, so all the hit
finding and track making is in
here — the code we’re interested in.

A directory for unit and
integration tests organized by
source directory

What is in a given repository?

[phpl3tkw@dunegpvm®8 larreco\]1$ cd larreco/
[php13tkw@dunegpvm@8 larreco\ 1% 1s
CMakeLists.txt DirOfGamma Genfit
ClusterFinder EventFinder HitFinder

MCComp
RecoAlg

TrackFinder WireCell

VertexFinder

ShowerFinder
SpacePointFinder

+ Separate directories for different aspects of reconstruction.
Hits

Cluster finding

Space point finding

Track finding

Showers

+ Within these directories is the code for the processes, for
example in HitFinder there are loads of hit finding algorithms.

P e e

[php13tkw@dunegpvm@®8 larreco\]1$ cd HitFinder/
[php13tkw@dunegpvm@8 HitFinder\]$ 1s
APAHitFinder_module.cc HitAnaAlg.h
CMakelLists.txt

RFFHitFinderAlg.h hitfindermodules. fcl

DisambigCheater_module.cc
DumpHits_module.cc
FFTHitFinder_module.cc
GausHitFinderAna_module.cc
GausHitFinder_module.cc
GaussianEliminationAlg.cxx
GaussianEliminationAlg.h
HitAnaAlg.cxx

HitAnaModule_module.cc
HitCheater_module.cc
HitFilterAlg.cxx
HitFilterAlg.h
HitFinderAna_module.cc
HitFinder_module.cc
MCHitAnaExample_module.cc
MCHitFinder_module.cc
RFFHitFinderAlg.cxx

RFFHitFinder_module.cc
RFFHitFitter.cxx
RFFHitFitter.h
RawHitFinder_module.cc
RegionAboveThresholdFinder. cxx
RegionAboveThresholdFinder.h

TTHitFinder_module.cc

dump_hits.fcl
hitana.fcl

hitfindermodules_argoneut.fcl
hitfindermodules_bo.fcl
hitfindermodules_dune.fcl.example
hitfindermodules_jp250L.fcl
hitfindermodules_microboone.fcl
mchitmodules. fcl

How to get your hands on repositories

+ The repositories are all git projects, meaning that you
‘pull” them using git commands.

+ From your srcs directory you type:
+ mrb g larreco

+ Should you want to use a specific version (that isn’t
the version of develop), then you type:

+ mrb g —t v05_14_00 larreco

+ I am skipping quite a few steps here, but will come
back to this later...

Steps to understand LLArSoft

+ Just to get started we need to know some things about:
+ git —analagous to svn which is used in NOvA
+ How versions are controlled in LArSoft
+ How different repositories talk to each other
+ How to setup your local environment
+ Producers vs Analyzers vs Algorithms

A rough and ready explanation of git

+ Git allows multiple people to use and update a common
item(s) in parallel. It can be used for files (eg friends have
spoken highly of it for theses), smallish packages (an event
display in LArSoft was originally in this form), or big
packages eg LArSoft.

+ It allows versioning control, so if you want to revert to a
previous state of a file it’s easy!

+ Whenever someone changes something they explain what
they are changing with a ‘commit message’

% You can have multiple branches so if you have a base file
which you need to manipulate in two different ways you
could:

+ Manipulate in way A on branch Karl_A

+ Manipulate in way B on branch Karl_B

A rough and ready explanation of git 2

+ When you have a git ‘project’ you have a master branch,
which is where files are stored for production (in LArSoft
we never touch this branch and all work is done on

develop or ot

ner branches)

<+ You can list all the branches with:

+ git branch —a

+ You can move to a branch which already exists with:
+ git checkout feature /Karl_OldBranch.
% You can make a new branch with:

+ git flow feature start Karl_NewBranch

+ To let other people see and use this branch you also need

to do:

+ git flow feature publish Karl_NewBranch

A rough and ready explanation of git 5

+ **Do lots and lots of coding™ To push all of that fancy
code do:

+ git add <file path within directory>
+ git commit —-m “I did loads of things!”
+ git push
+ Whilst working on your feature branch develop is

likely to change, so you’ll need to merge develop into
your feature branch

+ git checkout develop

+ git pull

+ git checkout feature /Karl_NewBranch
+ git merge develop

A rough and ready explanation of git 4

+ Merging your code into develop
+ git checkout develop
+ git merge feature/Karl_NewBranch
+ When the project is finished you have two choices
+ Delete the feature branch locally
+ git branch --delete feature /Karl_NewBranch
+ Delete the feature branch completely
+ git push origin --delete feature /Karl_NewBranch
+ Merge your feature branch into develop
+ git flow feature finish

+ git push

Resolving easy git contlicts

+ Someone will invariably change a file you have
changed at some point and a “git pull’ or ‘git merge’
will fail.

[php13tkW@dunegpvm@8 dunetpc\ 1$ git pull

remote: Counting objects: 52, done.
remote: Compressing objects: 100% (29/29), done.

remote: Total 29 (delta 20), reused @ (delta 0)
Unpacking objects: 100% (29/29), done.
From ssh://cdcvs.fnal.gov/cvs/projects/dunetpc

56c2a55..69c493c develop -> origin/develop
bef7ee8..5ae6262 feature/rnd_PmaModuleSplit -> origin/feature/rnd_PmaModuleSplit

4a2aeel..4fb703e feature/wallbank_APACrossingMuons -> origin/feature/wallbank_APACrossingMuons

Updating 56c¢2a55..69c493c
error: Your local changes to the following files would be overwritten by merge:

fcl/dunefd/gen/single/prodsingle_dunel@ktdphase. fcl
Please, commit your changes or stash them before you can merge.

Aborting

+ Luckily though there are tools git has which you can
use to fix this.

Resolving easy git contlicts

%

If you have
both changed
a file but in
different
places, it is
easy.

You can then
use git stash

Stores your
changes to a
temporary
location.

You can then
pull develop
and do git
stash pop to
merge in your
changes.

[bhb13tkwédune§bvm08 dunetbc\ 1$ git stash

Saved working directory and index state WIP on develop: 56c2a55 Changing CMakelLists to use art_make.

HEAD is now at 56c2a55 Changing CMakelLists to use art_make.
[php13tkw@dunegpvm@8 dunetpc\ 1$ git pull
Updating 56c2a55..69c493c
Fast-forward
dune/Utilities/signalservices_dune. fcl | 2
fcl/dunefd/gen/single/prodsingle_dunel@ktdphase.fcl | 1 +
fcl/dunefd/reco/standard_reco_dunel@ktdphase.fcl | 3 +++
3 files changed, 5 insertions(+), 1 deletion(-)
[php13tkw@dunegpvm@8 dunetpc\ 1$ git pull
Already up-to-date.
[php13tkw@dunegpvm@8 dunetpc\ 1$ git stash pop
Auto-merging fcl/dunefd/gen/single/prodsingle_dunel@ktdphase.fcl
On branch develop
Your branch is up-to-date with 'origin/develop'.
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

-

modified: fcl/dunefd/gen/single/prodsingle_dunel@ktdphase. fcl
Untracked files:

(use "git add <file>..." to include in what will be committed)
ups/product_deps.bak

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (b5f151faeb2dd5580eea76927589304155b34247)
[php13tkw@dunegpvm@8 dunetpc\]$ git status
On branch develop
Your branch is up-to-date with 'origin/develop’.
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
modified: fcl/dunefd/gen/single/prodsingle_dunel@ktdphase. fcl

Untracked files:
(use "git add <file>..." to include in what will be committed)

ups/product_deps.bak

no changes added to commit (use "git add" and/or "git commit -a")

Resolving harder git contlicts

% Or harder if you both changed the same line, and then

when you do git stash pop you will get an message saying
that you must tix the contlicts.

i | TestClassjava o

package com.s3ap.text;

SN O Terminal — zsh — 80x24

. public class TestClass {
mergeTest % git merge fr

Auto-merging Greetings.txt D <<<<<<<_OURS

CONFLICT (content): Merge conflict in Greetings.txt 3 void doSomethingElse()
Auto-merging Partings.txt s======

CONFLICT (content): Merge conflict in Partings.txt . void doSomething() |
Automatic merge failed; fix conflicts and then commit the result. RRRZZZZ LB,

mergeTest %)

+ You fix conflicts by deciding what the relevant should be
in regions indicated by “<<<<<<” and “>>>>>"

% Once you have done this you then do
+ g1t commit —a

+ git push

What 1s mrb?

+ Multiple-repository build system, simplifies the building of multiple
products pulled from ditferent repositories

+ setup mrb
<« mrb newDev —h ## Will list lots of info about newDev command

mrb -h
Usage /products/larsoft/mrb/v1_04_05/bin/mrb (newDev | gitCheckout | svnCheckout | mrbsetenv |
build | install | test | makePackage | mrbslp |

zapBuild | newProduct | changelog | updateDepsCM | updateDepsPV | checkDeps | pullDeps
| makeDeps) [-h for help]"

Tools (for help on tool, do ”/products/larsoft/mrb/v1_04_05/bin/mrb <tool> -h")

newDev (n) Start a new development area

gitCheckout (g) Clone a git repository

svnCheckout (svn) Checkout from a svn repository

build (b) Run buildtool

install (i) Run buildtool with install

test (t) Run buildtool with tests

makePackage (mp) Make distribution tarballs

zapBuild (z) Delete everything in your build area
newProduct (p) Create a new product from scratch

changelog (c) Display a changelog for a package
updateDepsCM (uc) Update the master CMakelLists.txt file
updateDepsPV (uv) Update a product version in product_deps
updateSource Update all svn or git code in MRB_SOURCE
makeDeps (md) Build or update a header level dependency list
checkDeps (cd) Check for missing build packages

pullDeps (pd) Pull missing build packages into MRB_SOURCE

Aliases (we use dliases for these commands because they must be sourced)

mrbsetenv Setup a development environment
(source $MRB_DIR/bin/mrbSetEnv)
mrbslp Setup all products installed in the working localProducts_XXX
directory

(source $MRB_DIR/bin/setup_local_products)

LArSoft versioning

+ When you setup a version of LArSoft you do the following;:
+ setup larsoft v06_01_00 —q e10:prof
+ The version (06_01_00) has 3 parts;

+ 1%t number is major version, increments slowly and onl% when there
are b)ig breaking changes eg moving to art v2 and ROOT6 (July
2016

% 21 number is minor version, increments when new feautres such as
data product members are added

+ 3" number is patch number, this increments roughly
+ The qualifier (e10:prof) has two parts
+ 1t number is the qualifier, it increments for newer versions of gcc
+ Seems to be cause for a major version?, for example v05 had e9.
+ 2" number is the compiler, and there are two options
+ Prof — profiled, runs faster but less useful debugging
+ Debug — runs slower, but easier to debug.

How repositories talk to each other

+ In alocal checkout of a repository you have a file called ups/product_deps
in here it will have a line which says which version of the given repository it
calls itself.

+ It will also say which version of both LArSoft and some key repositories it
depends on.

+ If you do not have these other repositories checked out then your code will
depend on the code which was in develop when that version of the
repository was made.

+ This means that to have the most up-to-date code you have to all the
repositories checked out and continuously do git pull.

+ Obviously a bit daft to do (compiling would take ages and you’d just
be pulling code all the time), hence a new release ~every week.

+ If you have repositories checked out then you will use the code which is in
your srcs directory not that which is in develop.

[php13tkw@dunegpvm@8 srcs\ 1% 1s
CMakelLists.txt dependency_list dunetpc duneutil Llarreco

How to setup your local environment

We now have a good enough idea about how stuff works
to get our hands on some code!

One question to consider though. Do you want to work on
computers in Minnesota or at FNAL?

Both will work exactly the same way but you have to do
the initial setup each time you log differently.

It FNAL

source /grid/fermiapp/products/dune/setup_dune.sh

If Minnesota (well Sheffield)

This requires someone to have installed CVFMS onto a
server locally somewhere.

source /cvmfs/fermilab.opensciencegrid.org/products/larsoft/setup

source /cvmfs/dune.opensciencegrid.org/products/dune/setup

How to setup your local environment 2

+ Now we want to setup larsoft and get our repos.
+ Check what is the latest version of larsoft
« ups list —aK+ larsoft
+ This works for all repos. & art products eg GEANT4
+ Setup larsoft of the desired version
« setup larsott v06_01_00 —q e10:prof
+ Make a new directory for LArSoft
[f using FNAL machines, DO NOT use your home area (AFS).
DO use your /dune/app/users/USER/ area.
Be careful about making any soft links between AFS and

o

<
<

/dune/a

op /users/USER. It can make grid submission

awkward

mkdir larDev
cd larDev

How to setup your local environment 3

% You now want make a new development area.
+ mrb newDev
% This only works in an empty directory

+ You will get an output saying you need to source
something now and whenever you logon.

% source localProducts_XXXX/setup

+ You now want to get your repositories
+ cdsrcs (cd $MRB SOURCEDIR)
+ mrb g dunetpc

+ mrb g < any other repository your heart desires >

How to setup your local environment 4

+ You now want to build your code.
+ cd../build (cd$MRB BUILDDIR)
+ mrbsetenv
+ mrbi—j8

+ When you have made changes to your code and need to recompile:
+ cd $MRB_BUILDDIR
+ make install - 8

+ You then want to make sure that you are using your local products
+« mrbslp

+ In the above commands the —j X tells the compiler how many cores to
use.

+ The mrb i —j 8 command can be split into two commands if you want to
do the building and installing separately.

+ mrb build - 8
<« make install

How to setup your local environment 5

+ Some pointers about building.

+ DUNE has a buildmachine (dunebuild01), it has 16 cores so
is much faster for building.

+ Whenever you check out a new repo or add a new file you
have to do

+ cd $MRB_BUILDDIR
+ mrbsetenv
« mrbi—j 16
+ There is a compiler called ninja which at least feels faster
+ cd $MRB_BUILDDIR; mrb z; mrbsetenv
+ setup ninja vl_6_0
« mrb 1—j 16 —generator ninja

+ When using ninja the make install -j8 command on the
previous slide changes to

+ ninja install - 8

What to do when you log back in

Luckily you don’t have to do this every time you login,
you only have to do a small subset of the commands.

Lett — my script for FN

AL

Right — my script for S

I/bin/sh

DIRECTORY=/dune/app/users/phpl3tkw/LarDevelop/

neffield

I/bin/sh
DIRECTORY=/home/warburton/LArSoft

source /cvmfs/fermilab.opensciencegrid.org/products/larsoft/setup

source /grid/fermiapp/products/dune/setup_dune.sh [source /cvmfs/dune.opensciencegrid.org/products/dune/setup

echo 'Local software sourced'
echo 'Larsoft set up'

setup mrb
setup ninja v1_6_0

source ${DIRECTORY}/localProducts_larsoft_x/setup [EXPOort MRB_PROJECT=larsoft

echo 'Local products sourced’

cd ${DIRECTORY}/build _s1f6.x86_64/
mrbsetenv

mrbsip

mrbsip

cd ${DIRECTORY}/

echo

echo 'Local software sourced'

source ${DIRECTORY}/localProducts_larsoft_x/setup
echo 'Local products sourced’

cd ${DIRECTORY}/build_s1f6.x86_64/
mrbsetenv

mrbslp

mrbs1p

. /grid/fermiapp/products/common/etc/setups.sh cd ${DIRECTORY}
setup jobsub_client
setup ninja v1_6_0

export FW_SEARCH_PATH=./:${FW_SEARCH_PATH}

New LLArSoft releases

%

There is a new release ~ every week, so you making a new
directory for each release would be Eain! This means we will
have to update our code to rely on the newest release when one
comes out.

First thing, log out and then log back in again!

Setup LArSoft as we did previously

+ source /grid/fermiapp/products/dune/setup_dune.sh
« setup larsott v06_01_01 —q e10:prof

+ cd larDev

We now want to make a new development within our current
directory

+ mrb newDev —p

+ The —p option tells mrb to make a new localProducts using an
existing src directory.

Source the new localProducts
+ source localProducts_XXXX/setup

New LLArSoft releases

= Now we want to update our repositories
+ c¢d $MRB_SOURCEDIR / dunetpc
+ git checkout develop
+ git pull
+ If working on a feature branch, want to do two more
commands

+ git checkout feature /Karl_NewBranch

+ git merge develop

+ git push
+ Update other repositories such as larreco, larsim etc.
+ Now, go to build directory and do a clean build.

+ mrb z; mrbsetenv; mrb i -j16 --generator ninja

Muluple builds

[t is possible to have multiple build areas (a debug and a
prof) which depend on the same srcs directory.

Debug for testing, prof for running jobs.
Clean login!

Setup environment and desired LArSoft
cd larDev

mrb newDev —v v06_01_00 —q debug:e10 -T debug —t
-T specities name of new directory
-f specifies that you want to use existing srcs

This makes new directory debug with a localProducts and
build directory in it

Source the new localProducts and build!

Now, when you logon you have the choice of using either
prof or debug, and they both use the same srcs directory.

Producers, Analyzers and Algs

Producers and analyzers define modules which are
ran at your desire when you run LArSoft

Algorithms however just hold code, and are accessed
by producers and analyzers.

Obviously advantageous to put quite general code
in algs so that multiple modules can use the same
code e.g. calorimetry calculations are in algs.

A producer produces something, thus changing the
event record eg hit reconstruction

An analyzer just analyzes the data.

There are also source modules but these are rarely
used, and filters which are very useful though I have
little experience using them.

Adding a new module

At some point you will want to make a new module for your
work.

First step is to decide if it is a producer / analyzer i.e. does it add
anything to the data record?

Second step is decide which repo and subdirectory to put it in.
You can make a brand new empty module

OR, you can just copy an existing module, renaming it and
changing the name of the class etc. (much easier).

You then need to make sure it will get built, this is done by
looking in the CMakeLists.txt file in that directory.

Hopefully this is no effort, as it should art_make which tells
the compiler to build everything in the directory, but some
directories don’t do this yet...Then you need to either change
it, or add it to the list.

Now do a clean build and your module is ready for you to run.

Adding a new directory

If you want to put your module in a new directory.

Make your new directory.

Add an extra add_subdirectory(DirName) line to the

CMakelLists.txt in the repo.

Example in larreco/larreco

add_subdirectory(ClusterFinder)
add_subdirectory(EventFinder)
add_subdirectory(Genfit)
add_subdirectory(HitFinder)
add_subdirectory(RecoAlg)
add_subdirectory(ShowerFinder)
add_subdirectory(TrackFinder)
add_subdirectory(VertexFinder)
add_subdirectory(SpacePointFinder)
add_subdirectory(MCComp)
add_subdirectory(WireCell)
add_subdirectory(DirOfGamma)

L — — — — — — — —

Make your new module, and copy a CMakeLists.txt

into your new directory.

Do a clean build and you're ready to go.

What we've covered

+ A quick overview of:
+ Git
% LArSoft versioning and how to use mrb to get
repositories
% Setting up your local environment
+ Using multiple build areas

+ Adding new modules and directories

